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Abstract

This paper presents a theoretical study of the steady state dynamic response of a railway track to a moving train. The

model for the railway track consists of two beams on periodically positioned supports that are mounted on a visco-

elastic 3D layer. The beams, supports, and layer are employed to model the rails, sleepers and soil, respectively. The axle

loading of the train is modeled by point loads that move on the beams. A method is presented that allows to obtain an

expression for the steady-state deflection of the rails in a closed form. On the basis of this expression, the vertical

deflection of the rails and its dependence on the velocity of the train is analyzed. Critical velocities of the train are

determined and the effect of the material damping in the sub-soil and in the pads on the track response at these critical

velocities is studied. The effect of the periodic inhomogeneity of the track introduced by the sleepers is studied by

comparing the dynamic response of the model at hand to that of a homogenized model, in which the supports are

assumed to be not discrete but uniformly distributed along the track. It is shown that the vertical deflection of the rails

predicted by these models resemble almost perfectly. The elastic drag experienced by a high-speed train due to exci-

tation of track vibrations is studied. Considering a French TGV as an example, this drag is calculated using both the

inhomogeneous and homogenized models of the track and then compared to the rolling and aerodynamic drag.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: High-speed railway track; 3D dynamic model; Moving load; Elastic drag
1. Introduction

Modern means of railway transportation in Western Europe are being currently developed to further

reduce the travelling time for passengers. Cruise velocities of such high-speed trains as French TGV,

German ICE, Swedish X-2000, etc. are nowadays in the range of 200–300 km/h and increase continuously.

This velocity increase brought a new problem to railway engineering, namely the problem of significant

amplification of the train and track vibrations at high train speeds (Kaynia et al., 2000). This amplification
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occurs when a train moves with a velocity that is close to the Rayleigh wave velocity in the sub-soil of a

railway track, the latter varying from 150 to 800 km/h, depending on the soil type. Obviously, modern high-

speed trains can easily reach the lower threshold. The amplification of the train and track vibrations at

high-speed is a threatening phenomenon, which can lead to rapid deterioration of the track structure and
may cause derailment of the train. Therefore, railway tracks should be designed so as to prevent such

amplification. To enable this design, a dynamic, three-dimensional model for railway tracks is to be de-

veloped that takes into account the track–sub-soil interaction.

There exist various formulations of a 3D-prediction-model for train-induced vibrations of the track and

surrounding soil. The first analytical 3D modeling of the dynamic response of a railway track was presented

by Filippov (1961). He considered the steady-state response of an Euler-Bernoulli beam resting on an elastic

half-space to a load moving uniformly over the beam and showed that the vertical deflection of the beam

becomes infinite if the load velocity is equal to the Rayleigh wave speed.
Labra (1975) extended the model of Filippov (1961) by accounting for the axial stresses of the rails

associated with the temperature extension. He demonstrated that the axial stresses could reduce the critical

velocity of the train significantly.

Krylov (1995) proposed a model for prediction of the level of track vibrations generated by a high-speed

train. Modeling the ground by elastic half-space, he used an approximate expression for the Green�s
function of the elastic half-space that takes into account the Rayleigh wave contribution only. In this

model, the train loading was represented by a number of point loads moving with a constant velocity and

applied to the half-space at the points defined by the sleeper span. The deflection of the rails under applied
axle forces was calculated in a quasi-static approximation using a simplistic model for the track: an Euler-

Bernoulli beam on Winkler foundation. The author studied the spectrum of ground vibration and showed

that the level of vibrations excited by a very fast train, whose velocity exceeds the Rayleigh wave velocity, is

huge with respect to that generated by conventional trains (1000–2000 times larger).

Dieterman and Metrikine (1996) investigated a so-called ‘‘equivalent stiffness’’ of a half-space interacting

with a beam. They extended the model of Filippov (1961) by considering the sub-seismic, trans-seismic and

super-seismic speed ranges of the train. It was shown that the equivalent stiffness is a complex function of

the frequency and wavenumber of waves in the beam. These authors also found that there exist two critical
velocities of a train as it is modeled by loads of a constant magnitude. The first one equals to the Rayleigh

wave speed (as it was found by Filippov, 1961) and the second one is slightly smaller than this speed.

Sheng et al. (1999) studied the ground vibration generated by a harmonic load that moves along a

railway track. In this study, the track was represented as a sandwich beam-structure resting on a layered

half-space. The investigation showed that the dynamic response of the track depends on the sub-grade

structure crucially. Grundmann et al. (1999) drew the same conclusion.

Metrikine and Popp (1999) presented the first analytical study of a 3D, periodically inhomogeneous

model for a railway track. The authors considered an Euler–Bernoulli beam mounted to purely elastic half-
space through periodically positioned supports. Main attention in this study was paid to evaluation of the

equivalent stiffness of the half-space against the sleepers. It was shown that the original 3D problem could

be reduced (exactly) to a 1D model, by replacing the half-space by a system of identical equivalent springs

placed under the sleepers, the stiffness of these springs being a complex function of the frequency and phase

shift between vibrations of neighboring supports. The authors showed that the Rayleigh wave speed plays a

crucial role in dynamics of the model. However, no computations on the beam response to the load were

presented in the paper.

Metrikine et al. (2001) enlightened a problem of the energy loss of the train�s engine on excitation of
vibrations of the track and soil. The authors explored the question on whether the generation of ground

vibration might lead to perceptible increase of the energy consumption. In this study, an enhanced model of

Filippov (1961) was employed. The analysis was carried out by means of introduction of the term ‘‘elastic

drag’’, which is a measure for the energy loss that a moving train experiences due to excitation of ground
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vibration. The authors showed that although the elastic drag grows significantly as the train approaches the

Rayleigh wave velocity, it is very small with respect to the aerodynamic drag.

Thanks to rapid development of computational technologies in the 1990s it became possible to use the

boundary-element method (BEM) and hybrid boundary-finite-element methods (BEM-FEM) for investi-
gation of ground vibration and dynamic behavior of the railway track. Recent developments of this ap-

proach can be exemplified by papers of Kaynia et al. (2000) and Van den Broeck et al. (2002), which are

distinguished from other publications by comprehensive comparison of theoretical results to in situ mea-

surements.

Kaynia et al. (2000) presented results of measurements carried out by Swedish Geotechnical Institute at

a site of the West Coast Line between G€ooteborg and Malm€oo where the soil is extremely soft. The test runs

were performed using a Sweden X-2000 passenger train composed of one locomotive and four cars. The

tests showed that significant amplification occurs of vibration of the railway track at velocities close to the
Rayleigh wave speed, which turned out to be very low in this part of the track––about 40 m/s. The authors

proposed a method for simulation of ground vibration from high-speed train based on the Kausel-Ro€eesset
Green�s function (1981). They modeled the ground as a layered visco-elastic half-space and the track as an

Euler–Bernoulli beam. Forces, uniformly moving at fixed distances from each other were employed to

model the loading by the train. The authors found a very good agreement between the measurements and

their computational simulations. On the basis of the developed model they studied the effect of stiffer

embankment (beam) and showed that increasing of the embankment�s bending stiffness results in sub-

stantial reduction of the vibration level.
Van den Broeck et al. (2002) developed a model of the railway track accounting for discretely positioned

sleepers, the soil stratification, the wheel/rail interaction and the unevenness of the rails. Although, this

model allows to study both the ground vibration and the train–track interaction, main attention in this

paper was paid to spectral analysis of the ground vibration and demonstration of the crucial role of the soil

stratification.

The present study is a development of the analytical approach to the problem that was proposed by

Metrikine and Popp (1999). This approach uses approximate boundary conditions at the sleeper–soil in-

terface in order to obtain a closed-form, steady-state solution of the problem. This solution allows to
calculate the dynamic response of the railway track relatively fast, as compared to FEM and FEM-BEM

methods.

In the present paper, the method proposed by Metrikine and Popp (1999) is improved so that it can

account for stratified, visco-elastic soils. The other original element of this paper is that the tangential

stresses at the sleeper–soil interface are taken into account (in approximate manner). Along with im-

provement of the method and enhancement of the model, this paper focuses on a number of issues, which

did not receive enough attention in the past. These issues are

1. Effect of the material damping in the soil and the damping in the pads on the dynamic response of the

track to a train that moves with a critical velocity;

2. Effect of longitudinal inhomogeneity of the track (introduced by the sleepers) on its dynamic response to

a moving train. This effect is studied by comparing the response of an inhomogeneous model for the

track to that of a homogenized one, in which the sleepers are assumed to be uniformly and continuously

distributed along the track;

3. The elastic drag that trains experience due to excitation of ground vibration and those of the rails. As

shown by Metrikine et al. (2001), this drag can grow significantly as a train moves with a high-speed.
In this paper, it is studied whether the inhomogeneity of the track can influence the drag perceptibly.

In the present study, a model is employed that consists of two Euler–Bernoulli beams on periodically

positioned supports and a visco-elastic layer. The beams, supports, and layer are used to model the rails,
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sleepers and soil, respectively. Point loads that move on the beams model the axle loading of the train. The

loads are assumed vertical and imposed by the weight of the train only (the magnitude of the loads is time-

independent).

The paper is structured as follows. In Section 2, a mathematical statement of the problem is presented
along with assumptions with which this model is valid. Then, applying the integral Fourier transform

transition to the frequency–wavenumber domain is performed. In Section 3, the concept of the equivalent

dynamic stiffness of the ground at the interfaces with the sleepers (Metrikine and Popp, 1999) is elaborated.

Using this stiffness, the original 3D model is reduced exactly (in the frequency domain) to an equivalent 1D

model and the steady-state response of the structure is studied. Main attention is paid to the vertical de-

flection of the rails and its dependence on the load velocity. Critical velocities are determined and the effect

of parameters of the model on the track response at these critical velocities is studied. Obtained results are

compared to those that follow from a homogenized model of the track, in which the sleepers are assumed to
be uniformly and continuously distributed along the rails. In Section 4, elastic drag experienced by a high-

speed train due to excitation of track vibrations is studied. First, the drag experienced by a single axle is

calculated and compared to that obtained by Metrikine et al. (2001), the latter having been calculated by

using a homogenized model. Second, to study the effect of the bogie wheelbase, the drag is studied for two

axles. Finally, the total elastic drag that is experienced by a French TGV is calculated and compared to the

results of Metrikine et al. (2001) and to the rolling and aerodynamic drag.
2. Model

2.1. Basic assumptions and mathematical statement of the problem in the time domain

We consider the steady-state vibrations of a railway track, whose model is presented in Fig. 1. This
model is composed of two beams on periodically positioned supports (sleepers) and a visco-elastic layer of

depth H that underlies the supports. The structure is excited by eight point loads of constant amplitude P
that move along the beams with constant speed V . These loads account for the weight of a train�s wagon
disregarding dynamic variation of the contact force.

To model the contact between the sleepers and the layer, it is assumed that the surface tractions are

uniformly distributed over the contact area. This assumption is approximate and valid only for those

processes in the layer, whose spatial scale is much larger than the maximum dimension of the contact area.

Thus, with this assumption we may consider low-frequency vibrations of the railway track only, the low-
frequency implying that the waves in the soil, which correspond to these vibrations, are long as compared to
x, u
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2a 
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H 

Fig. 1. Model: a visco-elastic layer overlaid by two beams on periodically positioned supports.
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the sleepers. This is precisely the frequency band that is relevant for the present study. Indeed, in this paper,

we model the train as a system of constant vertical loads. In this case, the spectrum of dynamic response of

the railway track is located (up to 95%) in the low-frequency range so that the assumption under discussion

is applicable.
The compatibility condition between the sleepers and the surface of the layer can be simplified in the low-

frequency band as well. In this band, having waves in the layer much longer than the sleepers, it is sufficient

to require that the displacements of the sleeper are equal (or proportional) to those of the surface of the

layer in the center of the contact area.

As shown by Metrikine and Dieterman (1997), with the above-discussed assumptions, the lateral motion

of a sleeper is uncoupled from its longitudinal and vertical motion. Therefore, under the vertical loading,

the lateral surface traction szy under the sleepers can be disregarded.

The model for the sleeper–layer contact in the vertical plane is schematized in Fig. 2.
We assume that the vertical displacement of each sleeper is equal to that of the layer (in the middle point

of the contact area). The horizontal displacement of the sleeper is disregarded but the layer is allowed to

move with respect to the sleeper, subjected to elastic reaction of a spring K. This spring is assumed to be

uniformly distributed over the contact area and its reaction to be proportional to the x-displacement of the

layer under the center point of the contact area. The spring K is introduced into the model to account for

possible longitudinal elasticity (not necessarily equal to the vertical one) of the ballast, which is not ex-

plicitly accounted for in the model.

The further assumptions adopted are:

• the beams are infinitely long and modeled in accordance with the Euler–Bernoulli theory (sufficient in the

low-frequency range);

• the sleepers are rigid;

• the pads that connect the sleepers and the rails are modeled as spring-dashpot elements;

• the contact area between each support and the layer is a rectangle of the size 2a� 2b;
• no break of contact between the sleepers and the layer is permitted;

• the layer is considered as visco-elastic in accordance with the Kelvin–Voigt model and is fixed at its
bottom.

Finally, we note that because of the symmetry of the loading with respect to the centerline y ¼ 0 of the

track, the sleepers will move vertically and the rails will vibrate identically. Because of the latter, in the

mathematical statement of the problem, only one equation of motion for the beam is presented.
ε

Fig. 2. Vertical cross-section y ¼ 0 and magnified ‘‘sleepers-layer’’ interface showing the model for interaction in the x-direction.
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With all aforementioned assumptions, the governing equations of motion can be written as follows.

The equation of motion for the layer
l̂lDuþ ðk̂kþ l̂lÞ$ð$ � uÞ ¼ qottu; ð1Þ
where uðx; y; z; tÞ ¼ ðuðx; y; z; tÞ; vðx; y; z; tÞ;wðx; y; z; tÞÞ is the displacement, q is mass density, k̂k ¼ kþ k�o=ot
and l̂l ¼ lþ l�o=ot are operators that are used instead of Lam�ee�s constants k and l to describe the layer

according to the Voigt phenomenological model.

The boundary conditions at the surface z ¼ 0 of the layer
rzzðx; y; 0; tÞ ¼
Hða� jyjÞ

4ab

X1
n¼�1

½Mottwn
s ðtÞ þ 2ðKp þ epotÞðwn

s ðtÞ � wbeamðnd; tÞÞ�Hðb� jx� ndjÞ;

szxðx; y; 0; tÞ ¼
Hða� jyjÞ

4ab

X1
n¼�1

Kuðnd; 0; 0; tÞHðb� jx� ndjÞ; szyðx; y; 0; tÞ ¼ 0;

ð2Þ
where rzzðx; y; 0; tÞ, szxðx; y; 0; tÞ and szyðx; y; 0; tÞ are the vertical, longitudinal and lateral tractions at z ¼ 0,

wbeamðx; tÞ is the vertical displacement of the beam, wn
s ðtÞ is the vertical displacement of the sleeper number

n, Kp and ep are the stiffness and damping coefficient of a pad, respectively, M is the mass of a sleeper, K is

the stiffness per unit length of the longitudinal springs at the ‘‘sleeper–layer’’ interface, Hð� � �Þ is the
Heaviside step function.

The boundary conditions at the bottom z ¼ H of the layer
uðx; y;H ; tÞ ¼ 0 ð3Þ
The compatibility condition for the vertical motion of the sleepers and layer
wn
s ðtÞ ¼ wðnd; 0; 0; tÞ ð4Þ
The equation of motion for one of the beams
qbeamSottw
beam þ EbeamIoxxxxwbeam ¼

X1
n¼�1

½ðKp þ epotÞðwn
s ðtÞ � wbeamðnd; tÞÞ�dðx� ndÞ þ P ðdðx� VtÞ

þ dðx� Vt þ d1Þ þ dðx� Vt þ d1 þ d2Þ þ dðx� Vt þ 2d1þd2ÞÞ; ð5Þ
where qbeamS and EbeamI are the mass per unit length and the bending stiffness of the beam, respectively, d1
and d2 are the distances between the loads as depicted in Fig. 2, and dð� � �Þ is the Dirac delta function.

2.2. Transformation into the frequency–wavenumber domain

To solve the system of governing equations (1)–(5), it is convenient to use the Helmholtz decomposition
of the displacement vector u:
u ¼ $uþ $� w; $ � w ¼ 0: ð6Þ
In terms of the potentials u and w ¼ fwx;wy ;wzg, the equations of motion for the layer read (Achenbach,

1973):
ĉc2LDu ¼ ottu; ĉc2TDw ¼ ottw; $ � w ¼ 0; ð7Þ
with ĉc2L ¼ ðk̂kþ 2l̂lÞ=q; ĉc2T ¼ l̂l=q. Expressions for the displacement vector u and stresses rzz, szx, szy in terms

of these potentials are given in Appendix A.

To find the steady-state solution to the problem at hand, we apply integral Fourier transforms with
respect to the time and horizontal co-ordinates. The signs of these transforms are defined as
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fx;k1;k2 ¼
Z 1

�1

Z 1

�1

Z 1

�1
f ðx; y; tÞ expðixt � ik1x� ik2yÞdxdy dt: ð8Þ
Throughout the paper, transformed quantities are given the subscripts x, k1 and k2 to show that the

transformation was applied with respect to the time, x-coordinate and y-coordinate, respectively.
Application of the Fourier transforms to the system of equations (2)–(5), (7), gives the system of

equations in the frequency–wavenumber domain that is presented below.

The equation of motion for the layer (from Eq. (7))
ozzux;k1;k2 þ R2
Lux;k1;k2 ¼ 0; ozzwx;k1;k2 þ R2

Twx;k1;k2 ¼ 0; ð9Þ

ik1ðwxÞx;k1;k2 þ ik2ðwyÞx;k1;k2 þ ozðwzÞx;k1;k2 ¼ 0; ð10Þ
where RL;T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 � x2=~cc2L;T

q
, ~cc2L ¼ c2L � ixðk� þ 2l�Þ=q, ~cc2T ¼ c2T � ixl�=q, cL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
is the

propagation velocity of the dilatational waves (P -waves), cT ¼
ffiffiffiffiffiffiffiffi
l=q

p
is the propagation velocity of the

shear waves (S-waves).
The boundary conditions at the surface z ¼ 0 of the layer (from Eq. (2), using Eqs. (A.2)–(A.4)):
~kkðozz � k21 � k22Þux;k1;k2 þ 2~llðozzux;k1;k2 þ ozðik1ðwyÞx;k1;k2 � ik2ðwxÞx;k1;k2ÞÞ ¼
sin k1b
k1b

sin k2a
k2a

�
X1
n¼�1

½�Mx2ðwn
s Þx þ 2ðKp � iepxÞðwxðnd; 0; 0;xÞ � wbeam

x ðnd;xÞÞ� expð�ik1ndÞ;

2ik1ozux;k1;k2 þ ozðik2ðwzÞx;k1;k2 � ozðwyÞx;k1;k2Þ þ ik1ðik1ðwyÞx;k1;k2 � ik2ðwxÞx;k1;k2Þ

¼ 1

~ll
sin k1b
k1b

sin k2a
k2a

X1
n¼�1

Kuxðnd; 0; 0;xÞ expð�ik1ndÞ;

2ik2ozux;k1;k2 � ozðik1ðwzÞx;k1;k2 � ozðwxÞx;k1;k2Þ þ ik2ðik1ðwyÞx;k1;k2 � ik2ðwxÞx;k1;k2Þ ¼ 0;

ð11Þ
where ~kk ¼ k� ixk�, ~ll ¼ l� ixl�.
The boundary conditions at the bottom z ¼ H of the layer (from Eq. (3), using Eq. (A.1)):
ik1ux;k1;k2 þ ik2ðwzÞx;k1;k2 � ozðwyÞx;k1;k2 ¼ 0;

ik2ux;k1;k2 � ik1ðwzÞx;k1;k2 þ ozðwxÞx;k1;k2 ¼ 0;

ozux;k1;k2 þ ik1ðwyÞx;k1;k2 � ik2ðwxÞx;k1;k2 ¼ 0:

ð12Þ
The compatibility condition for the vertical motion of the sleepers and layer (from Eq. (4)):
ðwn
s Þx ¼ wxðnd; 0; 0;xÞ: ð13Þ
The equation of motion for one of the beams (from Eq. (5), using Eq. (13))
ð�qbeamSx
2 þ EbeamIk41Þwbeam

x;k1
¼ 2pPdðx� k1V Þ 1

�
þ exp id1

x
V

� �
þ exp iðd1

�
þ d2Þ

x
V

�
þ exp ið2d1

�
þ d2Þ

x
V

��
þ
X1
n¼�1

ðKp � ixepÞðwxðnd; 0; 0;xÞ

� wbeam
x ðnd;xÞÞ expð�ik1ndÞ: ð14Þ
In the next section, the system of Eqs. (9)–(14) will be evaluated using a method presented by Metrikine

and Popp (1999). In accordance with this method, reaction of the layer against a sleeper can be replaced (in
the frequency domain) by an equivalent spring whose dynamic stiffness is a complex-valued function of

frequency and wavelength of waves in the beam. In the steady-state regime imposed by a uniformly moving
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load, all equivalent springs (there are infinitely many of them, one for each sleeper) have the same stiffness,

which becomes a function of frequency and a phase shift between vibrations of neighboring supports. This

phase shift is the same for every pair of neighboring supports and depends on the frequency of vibrations,

velocity of the load and the sleeper distance.
3. Steady-state response of the structure

3.1. Dynamic stiffness of the layer

The system of Eqs. (9)–(14) is evaluated on the basis of the general solution of Eq. (9). This solution

reads
ux;k1;k2 ¼ A1e
RLz þ A2e

�RLz; ðwxÞx;k1;k2 ¼ A3e
RTz þ A4e

�RT z;

ðwyÞx;k1;k2 ¼ A5e
RTz þ A6e

�RTz; ðwzÞx;k1;k2 ¼ A7e
RTz þ A8e

�RTz:
ð15Þ
Substituting solution (15) into Eq. (10) and boundary conditions Eqs. (11) and (12), a system of eight

algebraic equations with respect to Ai, i ¼ 1, 8 can be obtained, the matrix form of which is given as
½C �A ¼ F; ð16Þ
with matrix ½C � and vector F defined in Appendix B.

The system of algebraic Eq. (16) can be solved readily to give analytical expressions for Ai, i ¼ 1; 8.
Subsequently substituting these expressions into Eq. (15) and transformed (into the frequency–wavenumber
domain) Eq. (A.1) the following expressions for the Fourier displacements of the surface of the layer in the

x- and z-directions can be obtained
ux;k1;k2ðk1; k2; 0;xÞ ¼ a11F1 þ a13F3; wx;k1;k2ðk1; k2; 0;xÞ ¼ a31F1 þ a33F3; ð17Þ
with a11, a13, a31, a33, F1 and F3 defined in Appendix B.

Application of the inverse Fourier transforms over the wavenumbers k1 and k2 to Eq. (17), followed by

substitutions x ¼ md and y ¼ 0, yields
uxðmd; 0; 0;xÞ ¼
1

4p2

Z 1

�1

Z 1

�1
ða11F1 þ a13F3Þeik1md dk1 dk2;

wxðmd; 0; 0;xÞ ¼
1

4p2

Z 1

�1

Z 1

�1
ða31F1 þ a33F3Þeik1md dk1 dk2:

ð18Þ
Eqs. (18) establish the relationship between the displacements uxðmd; 0; 0;xÞ and wxðmd; 0; 0;xÞ of the

layer under the midpoints of the sleepers and the vertical displacement wbeam
x ðnd;xÞ of the beam in the

supported points (the latter displacement contains in F3, see Eq. (B.3)).

To find the steady-state response of the structure, we have to couple Eq. (18) with the equation of motion

for the beam (14). Solving the latter with respect to wbeam
x;k1

, applying to the result the inverse Fourier
transform over k1 and using the compatibility condition (13), we obtain
wbeam
x ðmd;xÞ ¼ 1

2p

Z 1

�1

2pPdðx� k1V Þeik1md dk1
EbeamIk41 � qbeamSx2

1
�

þ eid1ðx=V Þ þ eiðd1þd2Þðx=V Þ þ eið2d1þd2Þðx=V Þ
�

þ 1

2p

X1
n¼�1

½ðKp � ixepÞðwxðnd; 0; 0;xÞ � wbeam
x ðnd;xÞÞ�

Z 1

�1

eik1mde�ik1nd dk1
EbeamIk41 � qbeamSx2

:

ð19Þ
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The first integral in Eq. (19) can be evaluated analytically to give
wbeam
x ðmd;xÞ ¼ PV 3eiðx=V Þmd

EbeamIx4 � qbeamSx2V 4
1
�

þ eid1ðx=V Þ þ eiðd1þd2Þðx=V Þ þ eið2d1þd2Þðx=V Þ
�

þ 1

2p

X1
n¼�1

½ðKp � ixepÞðwxðnd; 0; 0;xÞ � wbeam
x ðnd;xÞÞ�

Z 1

�1

eik1mde�ik1nd dk1
EbeamIk41 � qbeamSx2

:

ð20Þ
The first term on the right-hand side of Eq. (20) is the ‘‘loading term’’, which determines the spatial

variation of the steady-state response in the frequency domain. All displacements in the frequency domain

must comply with this term e.g. expressions for all displacements must be proportional to expðixmd=V Þ.
Thus, to find the steady-state response of the structure, we have to search for the solution of Eqs. (18) and

(20) in the form
wbeam
x ðmd;xÞ ¼ C0ðxÞ expðixmd=V Þ;

wxðmd; 0; 0;xÞ ¼ CðxÞ expðixmd=V Þ;
uxðmd; 0; 0;xÞ ¼ AðxÞ expðixmd=V Þ;

ð21Þ
where C0ðxÞ, CðxÞ and AðxÞ are unknown functions of frequency.

Substituting Eq. (21) into Eq. (20), and employing Eq. (18), we obtain the following system of algebraic

equations with respect to C0ðxÞ, CðxÞ and AðxÞ:
A ¼ KJ11Aþ J13ðC0ðKp � ixepÞ þ ð�Mx2 þ Kp � ixepÞCÞ;

C ¼ KJ31Aþ J33ðC0ðKp � ixepÞ þ ð�Mx2 þ Kp � ixepÞCÞ;
ð22Þ
with
Jkj ¼
1

4p2~ll

Z 1

�1

Z 1

�1
akj

sin k1b
k1b

sin k2a
k2a

X1
n¼�1

expðik1dðm� nÞ � iqðm� nÞÞdk1 dk2: ð23Þ
Parameter q in Eq. (23) is given as
q ¼ x
V
d ð24Þ
and represents the phase shift between vibrations of neighboring sleepers.
In Eq. (22), A and C are the amplitudes of the horizontal (in the x-direction) and vertical vibrations of the

layer surface under the midpoint of a sleeper, respectively, whereas C0 is the amplitude of the vertical

vibrations of the beam in the point that is supported by this sleeper. These equations can be rewritten in the

following matrix form
KJ11 � 1 J13ð�Mx2 þ Kp � ixepÞ
KJ31 J33ð�Mx2 þ Kp � ixepÞ � 1

� �
A
C

� �
¼ �C0ðKp � ixepÞ

J13
J33

� �
: ð25Þ
Now, employing the conception of the equivalent dynamic stiffness proposed by Dieterman and Metrikine

(1996), we introduce a complex stiffness matrix vl–s that describes the dynamic stiffness of the layer at the

contact point with a sleeper. The inverse to this matrix (the compliance matrix) is defined as
v�1
l–s ¼

�J11 �J13
�J31 �J33

� �
ð26Þ
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and depends on the angular frequency x and the phase shift q between vibrations of neighboring sleepers.

Employing the equivalent stiffness matrix vl–s, Eq. (25) can be rewritten in the following, more compre-

hensible form
ðK þ Kps þMps þ Cps þ vl–sÞ
A
C

� �
¼ ðKps þ CpsÞ

0

C0

� �
ð27Þ
with K the stiffness matrix of the interface between the sleepers and the layer surface, Mps, Kps and Cps the

mass, stiffness and damping matrices of the sleeper-pad system. These matrices in the case at hand are given

as
K ¼ K 0

0 0

� �
; Mps ¼

0 0

0 �Mx2

� �
; Kps ¼

0 0

0 Kp

� �
; Cps ¼

0 0

0 �ixep

� �
: ð28Þ
To proceed with the analysis, we have to evaluate the compliance matrix v�1
l–s , that is the coefficients Jkj. To

this end it is convenient to introduce a new index of summation l ¼ m� n in Eq. (23) and rewrite it as
Jkj ¼
1

4p2~ll

Z 1

�1

Z 1

�1
akj

sin k1b
k1b

sin k2a
k2a

X1
l¼�1

expðiðk1d � qÞlÞdk1 dk2: ð29Þ
Eq. (29) contains a double integration and an infinite summation. Accomplishing these operations nu-

merically would be very laborious and inaccurate. Therefore, a preliminary analytical evaluation of this

equation is necessary, which is shown in Appendix C and leads to the following expression
Jjj ¼
1

4p~llab

Z 1

�1

sin k2a
k2

ajjð0; k2;xÞ
 

þ 2
X1
m¼1

res
ajjðk1; k2;xÞ

k1

� 	
k1¼km

1

� eik
m
1
b



þ i sinðkm1 bÞ

cos q� eik
m
1
d

cosðkm1 dÞ � cos q

�!
dk2

J13 ¼
i

2p~llab

Z 1

�1

sin k2a
k2

X1
m¼1

resfa013ðk1; k2;xÞgk1¼km
1

sinðkm1 bÞ sin q
cosðkm1 dÞ � cos q

dk2; j ¼ 1; 3:

ð30Þ
In order to analyze Eq. (30) numerically we should find the roots of equations coshRTH ¼ 0 and D0 ¼ 0

(see Eqs. (C.4)–(C.6)). The roots of the first equation ðcoshRTH ¼ 0Þ can be easily found analytically to

give:
km1 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

H 2
mþ 1

2


 �2

þ k22 �
x2

~cc2 T

s
; ð31Þ
whereas the roots of the second equation ðD0 ¼ 0Þ can only be found numerically (using a program for

finding complex roots of a transcendental equation). Having found all these roots, the residues in Eq. (30)

can be calculated and summarized straightforwardly. Naturally, the summation should be carried out over
a finite number of poles, which do not have very large imaginary and real parts (the contribution of the

other terms into the sum is negligible). After the summation has been accomplished, only a well convergent

integration over k2 remains to be carried out to evaluate Jkj. This integration can be accomplished using a

standard program for calculation of a single integral. Thus, we can consider Jkj as known complex functions

of the angular frequency x and the phase shift q.
Now that Jkj are known, Eq. (27) can be analyzed further. However, let us first study the equivalent

dynamic vl–s. This study will be limited by considering the vertical component of the stiffness, which is most

influential for the vertical dynamics of the railway track. To find an expression for this component, the
stiffness of the longitudinal contact between the layer and sleepers should be disregarded. In this case, the
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matrix Eq. (27) can be reduced to the following algebraic equation that describes the vertical vibrations of

the sleepers:
Cðvvertl–s �Mx2 þ Kp � ixepÞ ¼ C0ðKp � ixepÞ ð32Þ
with
vvertl–s ¼ �1=J33: ð33Þ
It is easy to see that Eq. (32) describes the vertical motion of a sleeper in the frequency domain as shown in

Fig. 3 (the sleeper is presented by a black rectangle).

The stiffness vvertl–s in Eqs. (32) and (33) and in Fig. 3 is, obviously, the vertical equivalent stiffness of the

layer at the contact points with the sleepers. It is important to underline that this stiffness does not depend

on the number n of the sleeper, i.e. the layer under each sleeper can be replaced by a set of identical springs

with complex stiffness vvertl–s .

As follows from Eqs. (33) and (30), the equivalent vertical stiffness vvertl–s is given as
vvertl–s ¼ � 1

4p~llab

Z 1

�1

sin k2a
k2

a33ð0; k2;xÞ
  

þ 2
X1
m¼1

res
a33ðk1; k2;xÞ

k1

� 	
k1¼km

1

� eik
m
1
b



þ i sinðkm1 bÞ

cos q� eik
m
1
d

cosðkm1 dÞ � cos q

�!
dk2

!�1

ð34Þ
and, therefore, is a complex-valued function of frequency x and the phase shift q between vibrations of

neighboring supports.

The result of numerical evaluation of Eq. (34) is presented in Fig. 4. The equivalent stiffness is shown in

this figure as a function of frequency x for the fixed value of the phase shift q ¼ xd=V equal to 0.5. The
solid and the dashed lines in Fig. 4 correspond to the real and imaginary parts of vvertl–s , respectively.

The calculations were carried out using the following parameters

for the layer
l ¼ 2:6� 107 N=m2; q ¼ 1960 kg=m3; m ¼ 0:3; l� ¼ 2:6� 104 N s=m2; H ¼ 5 m; ð35Þ
for the sleepers (geometrical parameters only)
2a ¼ 2:7 m; d ¼ 0:6 m; 2b ¼ 0:27 m: ð36Þ
Parameters of the layer given by Eq. (35) are almost identical to those used by Metrikine et al. (2001). These
parameters describe a realistic, quite stiff ground with the Rayleigh wave speed of cR ¼ 384 km/h, shear

wave speed of cT ¼ 414 km/h, and dilatational wave speed of cL ¼ 775 km/h. The geometric parameters of

the sleepers are common for Western European railways.
Fig. 3. Equivalent model for vertical motion of a sleeper (frequency domain).



Fig. 4. Equivalent stiffness of the layer versus angular frequency for q ¼ xd=V ¼ 0:5.
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Fig. 4 shows that the equivalent stiffness is a complicated function of frequency. For frequencies smaller

than x ¼ qcR=d, the real part of the equivalent stiffness is positive and the imaginary part, although not

zero, is very small. This implies that at this frequency band, for a fixed q, vibrations of the supports generate
no waves in the layer. For frequencies close to x ¼ qcR=d the equivalent stiffness becomes very small. This

happens because of the Rayleigh waves, which are generated so that they arrive to every sleeper in phase

(resonance), providing a large displacement of the layer under the sleepers (see Metrikine and Popp, 1999).

Fig. 4 shows also that the equivalent stiffness can be quite large at some frequencies. This effect can be
considered as ‘‘anti-resonance’’, which occurs if waves, as well as exponentially decaying displacement

fields, generated by the sleepers, are almost in anti-phase under any support, resulting in small displace-

ments of the layer under the sleepers. The frequencies that correspond to these large values of vvertl–s cannot

be found analytically since all three waves in the layer as well as the decaying displacement fields take part

in the phenomenon of anti-resonance.

The most important conclusion to be drawn from analysis of the equivalent stiffness is that vvertl–s can be

very small at some frequencies, which are determined by the equation x ¼ qcR=d. Because of this, a uni-

form motion of a constant load with a velocity that is equal to the Rayleigh wave speed can cause resonance
in the structure. Indeed, the phase shift between vibrations of the neighboring sleepers qðxÞ in the case of a

constant load is given by expression (24). Correspondingly, the condition for the equivalent stiffness to be

small takes the form
xd
cR

¼ xd
V

: ð37Þ
Thus, if the load velocity becomes equal to the Rayleigh wave speed, that is V ¼ cR, the layer reaction

becomes very small at all frequencies. As a result, vibrations of the beam that are generated by such load
should have large amplitude. Thus, the Rayleigh wave velocity is critical for the model at hand.
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Maximums of the equivalent stiffness should not be forgotten as well. They also distinguish clearly the

equivalent stiffness vvertl–s from a constant stiffness, which is frequently used in literature to replace the ground

reaction.

3.2. Steady-state response of the beam

In this section, the steady-state response of the rail (beam) is found and studied. This response is gov-

erned by Eqs. (14), (21) and (22), which form the following system of equations
EbeamIoxxxxwbeam
x ðx;xÞ � qbeamSx

2wbeam
x ðx;xÞ

¼ � 2pP
V

eixðx=V Þ 1
�

þ eid1ðx=V Þ þ eiðd1þd2Þðx=V Þ þ eið2d1þd2Þðx=V Þ
�

þ
X1
n¼�1

½ðKp � ixepÞðwðnd; 0; 0;xÞ � wbeamðnd;xÞÞ�dðx� ndÞ; ð38Þ

wbeam
x ðnd;xÞ ¼ C0ðxÞ expðixnd=V Þ;

wxðnd; 0; 0;xÞ ¼ CðxÞ expðixnd=V Þ;
uxðnd; 0; 0;xÞ ¼ AðxÞ expðixnd=V Þ;

ð39Þ

AðxÞ ¼ KJ11AðxÞ þ J13ðC0ðxÞðKp � ixepÞ þ ð�Mx2 þ Kp � ixepÞCðxÞÞ;
CðxÞ ¼ KJ31AðxÞ þ J33ðC0ðxÞðKp � ixepÞ þ ð�Mx2 þ Kp � ixepÞCðxÞÞ:

ð40Þ
This system can be simplified by eliminating AðxÞ from Eq. (40) and substituting wxðnd; 0; 0;xÞ and

wbeam
x ðnd;xÞ into Eq. (38). This yields
EbeamIoxxxxwbeam
x ðx;xÞ � qbeamSx

2wbeam
x ðx;xÞ

¼ � 2pP
V

eixðx=V Þ 1
�

þ eid1ðx=V Þ þ eiðd1þd2Þðx=V Þ þ eið2d1þd2Þðx=V Þ
�

� C0ðxÞðKp � ixepÞB0ðxÞ
X1
n¼�1

expðixnd=V Þdðx� ndÞ;

wbeam
x ðnd;xÞ ¼ C0ðxÞ expðixnd=V Þ;

ð41Þ
where
B0 ¼ �Mx2 � 1=J33 þ Kp � ixep þ
KJ13J31

J33ðJ33ð1� KJ11Þ þ KJ13J31Þ
: ð42Þ
For the analysis to follow, it is convenient to rewrite Eq. (41) making no use of the Dirac delta-function.

This can be accomplished employing the relationship between the classical and generalized derivatives
(Vladimirov, 1979) to give
EbeamI
o4

ox4
wbeam

x ðx;xÞ � qbeamSx
2wbeam

x ðx;xÞ ¼ � 2pP
V

eixðx=V Þ 1
�

þ eid1ðx=V Þ þ eiðd1þd2Þðx=V Þ þ eið2d1þd2Þðx=V Þ
�
;

ð43Þ

½wbeam
x �x¼nd ¼ ½oxwbeam

x �x¼nd ¼ ½oxxwbeam
x �x¼nd ¼ 0;

EbeamI ½oxxxwbeam
x �x¼nd ¼ �C0ðxÞB0ðxÞ expðixnd=V Þ;

ð44Þ
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wbeam
x ðnd;xÞ ¼ C0ðxÞ expðixnd=V Þ; ð45Þ
where the square brackets denote the following difference: ½f ðxÞ�x¼a ¼ f ðx ¼ aþ 0Þ � f ðx ¼ a� 0Þ. Eq. (43)
describes the vertical motion of the beam under the moving loads in all points everywhere but not at the

supported points. At these points, the boundary conditions given by Eqs. (44) and (45) are to be employed.

To find the steady-state solution to the system of Eqs. (43)–(45) we employ a method, which is based on

the fact that the beam displacement in the frequency domain satisfies the following condition (in appli-

cation to 1D structures this method was used, for example, by Vesnitskii and Metrikine, 1996; Belotser-

kovskiy, 1996):
wbeam
x ðxþ d;xÞ ¼ wbeam

x ðx;xÞ exp id
x
V

� �
: ð46Þ
This condition can be validated by direct substitution into Eqs. (43)–(45).

Condition (46) is commonly referred to as the periodicity condition. It gives a relationship between the

beam displacements at the points that are separated by the span distance d. Physically, this condition

implies that in the steady-state regime the beam displacement is repeated in time with the period T ¼ d=V
but with translation in space equal to d.

The periodicity condition (46) allows to obtain the solution to the problem (43)–(45) by performing the

following three steps.

1. The general solution to Eq. (43) is to be written in the interval x 2 ½0; d�. This solution contains four un-

known constants Ci, i ¼ 1; . . . ; 4.
2. Using the periodicity condition, the solution in the interval x 2 ½d; 2d� can be obtained from that in the

interval x 2 ½0; d� by multiplying the latter by expðidx=V Þ. Obviously, the result of this multiplication

contains the same four constants Ci, i ¼ 1; . . . ; 4.
3. Four unknown constants Ci, i ¼ 1; . . . ; 4 and one extra constant that is related to the Fourier-

displacement of the sleeper number n ¼ 1 are to be found by employing five boundary conditions at

the point x ¼ d given by Eqs. (44) and (45).

Let us accomplish this way of solution. The general solution to Eq. (43) in the interval x 2 ½0; d� can be

written as
wbeam
x ðx;xÞ ¼ C1 expðaxÞ þ C2 expð�axÞ þ C3 expðiaxÞ þ C4 expð�iaxÞ � F0 exp ix

x
V

� �
; ð47Þ
with
a ¼ ðqbeam=EbeamIÞ1=4; F0 ¼
2pPV 3

EbeamIx4 � qx2
ð1þ eid1

x
V þ eiðd1þd2Þðx=V Þ þ eið2d1þd2Þðx=V ÞÞ; ð48Þ
and Cjðj ¼ 1; . . . ; 4Þ unknown constants.
In accordance with the periodicity condition (46), the general solution to Eq. (43) in the interval

x 2 ½d; 2d� can be expressed as
wbeam
x ðx;xÞ ¼ exp id

x
V

� �
fC1 expðaðx� dÞÞ þ C2 expð�aðx� dÞÞ þ C3 expðiaðx� dÞÞ

þ C4 expð�iaðx� dÞÞg � F0 exp ix
x
V

� �
: ð49Þ
Substitution of Eqs. (47) and (49) into the boundary conditions (44) and (45) gives a system of five algebraic
equations, which is presented in Appendix D together with its analytical solution (Eqs. (D.1) and (D.2),

respectively).
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Thus, the steady-state displacement of the beam is found in the frequency domain. In the interval

x 2 ½0; d� this displacement is determined by Eqs. (47) and (D.2). For other values of the co-ordinate x, the
periodicity condition (46) is to be applied.

The beam displacement in the time domain can be found numerically applying the inverse Fourier
transform to Eq. (47). In the interval x 2 ½0; d� this yields
1 Ca
wbeamðx; tÞ ¼ 1

2p

Z 1

�1
C1e

ax
�

þ C2e
�ax þ C3e

iax þ C4e
�iax � F0eixðx=V Þ

�
e�ixt dx: ð50Þ
The further analysis will be carried out in the following way. First, the beam response will be studied to a

single load that is located at the point x ¼ Vt (the other loads will be disregarded). Under this single load, (a)

the beam displacement at the loading point will be studied as a function of the load velocity; (b) the effect of

the damping in the layer and supports (pads) on the displacement of the beam at this point will be in-

vestigated. To study importance of modeling the sleepers as discretely positioned supports, this displace-

ment will be compared to that of a corresponding homogenized model. Second, the beam profiles

corresponding to a single load, two loads (bogie) and four loads (wagon) will be elaborated.

The beam deflection is calculated using parameters of the structure given by Eqs. (35) and (36). Addi-
tionally, the following parameters for the beam, load and pads are employed (these parameters correspond

to UIC60 rail and a train�s wheel loading)
EbeamI ¼ 6:11� 106 Nm2; qbeamS ¼ 60:34 kg=m; P ¼ 100 kN;

M ¼ 250 kg; Kp ¼ 108 N=m; ep ¼ 105 N s=m:
ð51Þ
For comparison, the beam deflection is calculated on the basis of a correspondent homogenized model, in

which (a) the sleepers and the pads are considered as being uniformly distributed along the beam; (b) the
contact between the sleepers and the surface of the layer is considered to take place everywhere within the

area jyj < a. The homogenized model is very similar to that considered by Sheng et al. (1999). To have an

exact correspondence between the original and homogenized models, parameters of the latter should be

taken as
Mhom ¼ M
d
; Khom

P ¼ KP

d
; ehomP ¼ eP

d
: ð52Þ
Fig. 5 presents the beam displacement at the loading point as a function of the load velocity for two

values of the material damping in the layer. The solid line corresponds to the periodically inhomogeneous
model, whereas the dashed line is related to the homogenized one. For the inhomogeneous model, the

displacement is calculated at the time moment when the load passes the sleeper n ¼ 0 ðxload ¼ 0Þ. 1

Fig. 5 shows that the velocity dependence of the beam deflection is almost the same for both models.

Slight difference takes place at small velocities and in the vicinity of the critical velocity (V ¼ 390 km/h).

The latter is larger than the Rayleigh wave velocity and smaller than the shear wave velocity (cR ¼ 384 km/

h, cT ¼ 414 km/h).

Fig. 6 shows the effect of the damping in the pads on the beam displacement at the loading point, which

is perceptible as follows from the figure. The larger the damping the smaller the beam deflection. It should
be mentioned, however, that the smaller the material damping in the layer the less sensitive the beam

response to the damping in the pads.

The characteristic beam profiles are presented in Fig. 7 under the single load, two loads (bogie) and four

loads (wagon), respectively. The profiles are plotted for three values of the load velocity: 250 km/h

ðV < cRÞ, 400 km/h ðcT < V < cLÞ and 500 km /h ðcT < V < cLÞ. These velocities are chosen to represent
lculations show that the beam deflection at the loading point depends only slightly on the load position.



Fig. 5. Displacement of the beam at the loading point versus load velocity. Effect of material damping.

Fig. 6. Displacement of the beam at the loading point versus load velocity. Combined effect of material damping and viscosity of

the pads.
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three regimes of motion. The velocity of 250 km/h corresponds to the sub-critical regime and is a char-
acteristic velocity of contemporary Western-European high-speed trains. The velocity 400 km/h is repre-

sentative for the near-critical response of the beam. As for the last velocity, 500 km/h, this is about the

record for modern trains.

The displacements are calculated at the time moment when the front load ðx ¼ VtÞ is at the point x ¼ 0,

i.e. exactly above the sleeper n ¼ 0. For the distances between the loads, the dimensions of German ICE are

adopted:



Fig. 7. Beam patterns.
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d1 ¼ 3 m; d2 ¼ 8:46 m: ð53Þ
Here d1 is the bogie wheelbase, d2 is the distance between two car bogies (see Fig. 2).
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Fig. 7(a) show that in the sub-critical motion the loads generate no waves in the system. The response is

almost symmetric with respect to the loads. A small asymmetry is introduced by the damping in the pads

and the layer.

In the supercritical motion, the loads excite waves in the beam. The length of these waves can be in the
order of the bogie wheelbase d1 and the car distance d2. Interfering between each other, these waves can

result either in decrease or increase of the maximum displacement of the beam as compared to the case of a

single load.

Let is note that the beam profiles are not stationary in the reference system that moves with the load.

They constantly change in time since the structure is inhomogeneous. However, thanks to periodic char-

acter of inhomogeneity and uniformity of motion of the load, the profiles repeat themselves in time with the

period T ¼ d=V .
4. Elastic drag experienced by a train due to excitation of ground vibrations

In this section, we investigate a so-called ‘‘elastic drag’’ experienced by a train. This drag was introduced

by Metrikine et al. (2001) as a measure for energy loss that the train experiences due to excitation of waves

in the track and surrounding soil. First, we will analyze the elastic drag for a single load. Then, the influence

of the bogie wheelbase on the drag will be studied considering two loads. Finally, the elastic drag expe-

rienced by a high-speed train (French TGV) will be calculated and compared to the drag, which is predicted
by corresponding homogenized model.

According to Metrikine et al. (2001), in the case of a constant loading the elastic drag can be calculated

as a ratio between the power input Q (energy per unit time that is transmitted into elastic system by the

moving load) and the load velocity V . For the case of a single load (wheel) the power input is given as
Dwheel
e ¼ Q

V
¼ P

V
owbeam

ot

����
x¼Vt

: ð54Þ
Results of numerical evaluation of Eq. (54) are presented in Fig. 8 that shows the dependence of the elastic

drag Dwheel
e on the load velocity V at the moment t ¼ 0, when the load passes the sleeper n ¼ 0. The figure

presents three curves that are plotted for three values of the material damping l�. The other parameters are

given by Eqs. (35), (36) and (51).

Fig. 8 shows that the elastic drag grows rapidly as the load velocity approaches the critical one. This

result is in perfect correspondence with that obtained by Metrikine et al. (2001) on the basis of a homo-

geneous model. The specific feature of the drag in the periodically inhomogeneous model is that the drag is

a periodic, with the period T ¼ d=V , function of time (not a constant as for homogeneous models).
Therefore, to obtain a physically relevant value, the drag should be averaged with respect to the sleeper

period using the following expression
D
wheel

e ¼ P
Vd

Z d

0

owbeam

ot

����
t¼x=V

dx: ð55Þ
For a single load, however, Dwheel
e and D

wheel

e appear to be almost the same. Therefore, Fig. 8 is represen-

tative for D
wheel

e as well.

Consider now the elastic drag experienced by two loads moving at a fixed distance d1 from each other
(bogie). This drag is given as
Dbogie
e ¼ P

V
owbeam

ot

����
x¼Vt

 
þ owbeam

ot

����
x¼Vt�d1

!
: ð56Þ



Fig. 8. Elastic drag for a single load versus load velocity.
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To study the effect of the bogie wheelbase d1, Dbogie
e is plotted in Fig. 9 as a function of d1 for two velocities

of the loads. Fig. 9(a) presents the drag at the time moment t ¼ 0, whereas Fig. 9(b) shows the drag at

t ¼ d=2V . Fig. 9 demonstrates the following:

(1) Elastic drag in the sub-critical case (250 km/h) is less than that in the supercritical one (400 km/h).

(2) Dependence of the elastic drag on the wheelbase has a minimum located approximately at d ¼ 2 m.
Fig. 9. Elastic drag for a car�s bogie versus wheelbase; (a) x ¼ 0; (b) x ¼ d=2.



Fig. 10. Elastic drag averaged over the sleeper distance versus wheelbase.
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(3) Elastic drag experienced by a bogie depends upon the wheelbase and is quite sensitive to variation

of this distance, especially in the sub-critical motion. This is a consequence of the periodicity of the

structure.

(4) Elastic drag depends on the time moment, at which it is calculated.

Let us study the average value of the drag experienced by two loads, which is given by the following

expression and shown in Fig. 10
D
bogie

e ¼ � P
Vd

Z d

0

owbeam

ot

����
x¼Vt

 
þ owbeam

ot

����
x¼Vt�d1

!
dx: ð57Þ
This figure shows that the averaging removes the oscillatory dependence of the drag on the wheelbase d1.
Additionally, as the distance d1 exceeds 10 m, the drag becomes almost independent of this distance. This

implies that the drag experienced by two bogies of one wagon can be found by simple doubling of the drag

experienced by one bogie.

Consider the drag experienced by a high-speed train taking as an example a TGV, which consists of two

power cars and eight passenger cars. The weight of the power car is 80,000 kg, the weight of the passenger

car is 40,000 kg. Thus, each wheelset of the power cars corresponds to the loading of 200,000 N whereas

each wheelset of a passenger car gives 100,000 N of constant loading. Geometric parameters of the TGV are
d1 ¼ 3 m; d2 ¼ 11 m; d3 ¼ 3:27 m; ð58Þ

where d1 is the bogie wheelbase, d2 is the distance between the last wheelset of the first bogie and the

first wheelset of the second bogie, and d3 is the distance between the last wheelset of the first wagon and

the first wheelset of the second wagon (see Fig. 2).

In the paper of Metrikine et al. (2001) it was concluded that the elastic drag is small with respect to the

aerodynamic drag. This conclusion, however, was drawn considering the contact force between the wheels

of the train and the rails as given by the dead weight of the train alone. No dependence of the contact force

on the velocity of the train was accounted for. In reality, the contact force depends on the aerodynamic
resistance to the train motion. Thanks to the special design of high-speed trains, this resistance presses the



Fig. 11. Elastic drag for inhomogeneous model ðDinhom
e Þ, elastic drag for homogenised model ðDhom

e Þ, rolling drag ðDrollÞ, and aero-

dynamic drag ðDaeroÞ versus load velocity.
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train, especially the first wagon (locomotive) against the rails. We are not aware of any measurements of the

aerodynamically induced contact pressure. Therefore, we model it in a rough way, by replacing the weight
of the locomotive P by P ð1þ cV 2Þ, where c is a coefficient, which reflects the fact that the aerodynamic drag

(which is normally assumed as being proportional to V 2) influences the contact force between the train

wheels and the rails. This coefficient depends on the shape of a high-speed train and the surface of the train

as any drag coefficient associated with a flow around a body.

To show possible effect of the aerodynamically induced contact force on the elastic drag, we calculated

the latter assuming that c ¼ 0:001 s2/m2. Considering only the wheels of the power car being subjected to

the effect of the aerodynamic pressure, and employing parameters given by Eqs. (35), (36), (51) and (58), the

elastic drag was calculated for the TGV. The result is shown in Fig. 11 in the form of dependence of the
drag on the train velocity.

To compare the periodically inhomogeneous model to the correspondent homogenized model, the ve-

locity dependence of the elastic drag for the latter is also shown in Fig. 11. The aerodynamic drag and the

rolling drag are plotted in accordance with the results of paper (Hopkins et al., 1999).

Comparing the inhomogeneous and homogenized models, one can conclude that the difference between

them becomes apparent in the supercritical regime only, in which the elastic drag for the homogenized

model is larger.

The most important result that is demonstrated by Fig. 11 is that as soon as the train velocity approaches
the Rayleigh wave speed, the elastic drag becomes comparable with the aerodynamic drag and then exceeds

it. Thus, in the opinion of the authors, one of the design criteria for high-speed trains should be the energy

consumption calculated on the basis of the aerodynamic, rolling and elastic drag. The latter should be

included necessarily, being a possible cause of perceptible energy loss.
5. Discussion and conclusions

In this paper, the dynamic response of a railway track to a moving train has been studied employing
a three-dimensional model for the track. The model has been composed of two beams on periodically
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positioned supports and a visco-elastic layer. Every support has been assumed to contact the layer over

a rectangular area, within which the surface tractions have been uniformly distributed. The train

loading has been accounted for with the help of a set of vertical point loads applied to the beams.

Both the magnitude and translational (along the beams) velocity of these loads has been chosen as
constant.

The aim of the paper has been to present a method of quasi-analytical analysis of dynamic response

of the track and to consider a number of issues associated with the dynamic behavior of the track,

which have not received enough attention in the past. These issues are: (a) the effect of periodic in-

homogeneity of the track (introduced by sleepers) on its dynamic response; (b) the relevance of ‘‘elastic

drag’’, which the train experiences because of excitation of the track and ground vibrations. To en-

able consideration of the first issue, a homogenized model has been employed for comparison, the

homogenization applied to the sleepers making them uniformly and continuously distributed along the
track.

It has been shown that the homogenized model predicts almost the same response as the original in-

homogeneous model. Both models predict a critical velocity of the train, which, for the chosen model of the

ground, is larger than the Rayleigh wave velocity and smaller than the shear wave velocity. The material

damping in the layer and viscosity in the pads (elements that are positioned between the rails and sleepers),

which effect the track response significantly, have shown to influence both models equivalently.

The elastic drag for a TGV has been calculated and compared to the aerodynamic and rolling drag. It

has been shown that at high velocities of the train (close to the Rayleigh wave speed) the elastic drag is
comparable to or larger than the aerodynamic drag. Thus, the elastic drag can be a cause of considerable

energy consumption.

Let us discuss the results obtained in this paper. To our knowledge, this paper is the first attempt to

show that the periodically inhomogeneous, three-dimensional model for a railway track predicts almost

the same dynamic response of the rails as a corresponding homogenized model. This result can be quite

valuable for railway engineers, since the homogenized model needs much less calculation time than the

inhomogeneous one. We ought to note, however, that validity of the homogenized model has been

proven in this paper for the loads of constant magnitude only. Therefore, the homogenized model might
fail if a varying in time load or a system with internal degrees of freedom would be employed to model

the train.

The elastic drag that has been calculated in this paper might become an important issue in the years to

come, since it is concerned with energy consumption, which is a key issue nowadays. We do not possess

enough date to prove that the elastic drag is indeed as relevant as the aerodynamic drag. However, a rough

estimation of the elastic drag, which has been presented in this paper, indicates importance of a further

investigation of this drag. Assuming that the elastic drag can be indeed as high as predicted in this paper, we

should think of measures to reduce it. A few ways to accomplish this are discussed below.
The most decisive way to decrease the elastic drag and to avoid the dynamic amplification in general is to

increase the critical velocity along the railway track. This can be achieved by (a) embedding the track in a

concrete slab (so-called slab track); (b) building the track on piles thereby uncoupling vibrations of the

track from those of the ground.

A less decisive but easy way to reduce the elastic drag is a redistribution of the train weight. Indeed,

the elastic drag is proportional to the train�s weight squared. This implies that contribution of heavy

wagons is considerably larger than that of more lightweight wagons. Thus, uniform distribution of the

weight over the train length can reduce the elastic drag significantly. Note that although because of
other reasons, the last generation of German ICE has engines mounted to every wagon, not only to the

locomotive(s).

One more option to reduce the elastic drag lays in its dependence on the wheelbase of the train bogie.

Varying this wheelbase within reasonable limits, the drag can be reduced by factor two.
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Finalizing the paper, it should be noted once again that the mathematical formulation of the problem

that has been used in this paper is approximate because of the assumption of uniform distribution of

stresses beneath the sleepers. The only way to validate this assumption is to compare results obtained in this

paper to those of a direct numerical simulation of a corresponding mixed contact problem. We are going to
carry out this comparison in the nearest future.
Acknowledgements

This work was partly financed by the Russian Foundation for Basic Research, grants 03–01–00644 and

03–01–06184. This support is highly appreciated.

Appendix A

The expressions for the displacement vector u and stresses rzz, szx, szy in terms of the potentials u and w

read (see Achenbach, 1973)
u ¼ ou
ox

þ owz

oy
�
owy

oz
; v ¼ ou

oy
� owz

ox
þ owx

oz
; w ¼ ou

oz
þ
owy

ox
� owx

oy
; ðA:1Þ
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Appendix B

The matrix ½C � and vector F in Eq. (16) are given as
½C � ¼

0 0 ik1 0 ik2 0 RT 0

0 0 0 ik1 0 ik2 0 �RT

ik1a1 ik1=a1 0 0 �RTb1 RT=b1 ik2b1 ik2=b1

ik2a1 ik2=a1 RTb1 �RT=b1 0 0 �ik1b1 �ik1=b1

RLa1 �RL=a1 �ik2b1 ik2=b1 ik1b1 ik1=b1 0 0

2ik1RL �2ik1RL k1k2 k1k2 �ðR2
T þ k21Þ �ðR2

T þ k21Þ ik2RT �ik2RT

2ik2RL �2ik2RL R2
T þ k22 R2

T þ k22 �k1k2 �k1k2 �ik1RT ik1RT

c c �2ik2RT 2ik2RT 2ik1RT �2ik1RT 0 0

266666666666666664

377777777777777775
ðB:1Þ

F ¼ f0; 0; 0; 0; 0; F1; 0; F3g ðB:2Þ
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with
a1 ¼ expðRLHÞ; b1 ¼ expðRTHÞ; c ¼ 2R2
T þ x2=~cc2T;

F1 ¼
1

~ll
sin k1b
k1b

sin k2a
k2a

X1
n¼�1

Kuxðnd; 0; 0;xÞ expð�ik1ndÞ;

F3 ¼
1

~ll
sin k1b
k1b

sin k2a
k2a

X1
n¼�1

½�Mx2W n
x ðxÞ þ 2ðKp � iepÞðwxðnd; 0; 0;xÞ

� wbeam
x ðnd;xÞÞ� expð�ik1ndÞ

ðB:3Þ
Expressions for a11, a13, a31 and a33 in Eq. (17) read
a11 ¼
1

D



� k22RLRT sinhRTHðð4ðk21 þ k22Þ þ cÞ coshRLH coshRTH � 2ðcþ k21 þ k22ÞÞ

þ R2
T sinhRLHðk22ðcþ 4R2

LÞ sinh
2 RTH þ k21ðc� 2ðk21 þ k22ÞÞ cosh

2 RTHÞ
þ RLR3

T sinhRTHðð2k21 � cÞ coshRLH coshRTH þ 2k22Þ þ ck22ðk21 þ k22Þ sinhRLH sinh2 RTH
�

a13 ¼ k1a013;

a013 ¼
iRT

D
coshRTHfcðk21 þ k22Þ sinhRLH sinhRTH

þ RLRTð2RLRT sinhRLH sinhRTH þ ðcþ 2ðk21 þ k22ÞÞð1� coshRLH coshRTHÞÞg;

a33 ¼ coshRTH
RLRT

D
x2

~cc2T
fRLRT sinhRLH coshRTH � ðk21 þ k22Þ coshRLH sinhRTHg;

a31 ¼ �a13;

D ¼ RT coshRTHfRLRTð4ðk21 þ k22Þ
2 þ c2Þ coshRLH coshRTH

� ðk21 þ k22Þðð4R2
LR

2
T þ c2Þ sinhRLH sinhRTH þ 4RLRTcÞg ¼ D0RT coshRTH

ðB:4Þ
Appendix C

To evaluate Eq. (29), we rewrite it in the following form
Jkj ¼
1

4p2~ll
1

2iab

Z 1

�1

sin k2a
k2

S0
kjðk2;xÞdk2; k ¼ 1; 3; j ¼ 1; 3; ðC:1Þ
where
S0
kjðk2;xÞ ¼

X1
n¼�1

expð�iqnÞ
Z 1

�1
akj

eik1ðdnþbÞ � eik1ðdn�bÞ

k1
dk1: ðC:2Þ
Let us first deal with the integral in Eq. (C.2), the integrand of which consists of two terms that are pro-

portional to expðik1ðdnþ bÞÞ and expðik1ðdn� bÞÞ. Both terms can be evaluated simultaneously considering

the following integral
ZkjðrÞ ¼
Z 1

�1
akjðk1; k2;xÞ

eik1r

k1
dk1; r ¼ nd � b: ðC:3Þ
Integration of Eq. (C.3) will be performed using the method of contour integration (Fuchs et al., 1964). To

apply this method, singular points of the integrand should be determined. The integrand in Eq. (C.3) are
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single-valued functions despite the radicals RL and RT. These radicals do not make the integrand multi-

valued since the replacement RL;T ! �RL;T does not change the integrand. Thus, only poles of the integrand

should be considered. All these poles are simple and defined by the following equations

for Z33
D0 ¼ 0; k1 ¼ 0; ðC:4Þ

for Z13
D0 ¼ 0; ðC:5Þ

for Z11
D0 ¼ 0; coshRTH ¼ 0; k1 ¼ 0; ðC:6Þ

with (see also (B.4))
D0 ¼ RLRTð4ðk21 þ k22Þ
2 þ c2Þ coshRLH coshRTH

� ðk21 þ k22Þðð4R2
LR

2
T þ c2Þ sinhRLH sinhRTH þ 4RLRTcÞ: ðC:7Þ
Having defined (though implicitly) positions of the poles in the complex k1-plane, we have to close the

original integration path that runs from minus to plus infinity along the real axis. This can be done with the

help of a semi-circle (with its center at the origin) that is positioned either in the upper or lower half-plane of

the complex k1-plane. Which half-plane is to be chosen is dictated by Jordan�s lemma (Abramowitz and

Stegun, 1970), which ensures that the integration along the chosen semi-circle vanishes as its radius tends to

infinity. In application to Eq. (C.3), the path has to be closed over the upper half-plane if r > 0 (see Fig. 12)
and over the lower half-plane if r < 0.

Now the residue theorem can be applied, according to which an integral along a closed contour can be

expressed through the sum of residues over poles that are located within this contour. In our case this

theorem yields

for r > 0
I
a11ðk1; k2;xÞ

eik1r

k1
dk1 ¼ Z11ðrÞ � pia11ð0; k2;xÞ ¼ 2pi

X
m

res a11ðk1; k2;xÞ
eik1r

k1

� 	
k1¼km

1

;I
a33ðk1; k2;xÞ

eik1r

k1
dk1 ¼ Z33ðrÞ � pia33ð0; k2;xÞ ¼ 2pi

X
m

res a33ðk1; k2;xÞ
eik1r

k1

� 	
k1¼km

1

;I
a13ðk1; k2;xÞ

eik1r

k1
dk1 ¼ Z13ðrÞ ¼ 2pi

X
m

resfa013ðk1; k2;xÞeik1rgk1¼km
1
;

ðC:8Þ
Fig. 12. Integration contour for (a) r > 0 and (b) r < 0.
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for r < 0
I
a11ðk1; k2;xÞ

eik1r

k1
dk1 ¼ Z11ðrÞ þ pia11ð0; k2;xÞ ¼ �2pi

X
l

res a11ðk1; k2;xÞ
eik1r

k1

� 	
k1¼kl

1

;I
a33ðk1; k2;xÞ

eik1r

k1
dk1 ¼ Z33ðrÞ þ pia33ð0; k2;xÞ ¼ �2pi

X
l

res a33ðk1; k2;xÞ
eik1r

k1

� 	
k1¼kl

1

;I
a13ðk1; k2;xÞ

eik1r

k1
dk1 ¼ Z13ðrÞ ¼ �2pi

X
l

resfa013ðk1; k2;xÞeik1rgk1¼kl
1
;

ðC:9Þ
with km1 and kl1 the roots defined by Eqs. (C.4)–(C.6) located in the upper half-plane and the lower half-plane

of the complex k1-plane, respectively ðImðkm1 Þ > 0; Imðkl1Þ < 0Þ.
Expressing ZijðrÞ from Eqs. (C.8) and (C.9), we obtain

for r > 0
Z11ðrÞ ¼ pia11ð0; k2;xÞ þ 2pi
X
m

res a11ðk1; k2;xÞ
eik1r

k1

� 	
k1¼km

1

;

Z33ðrÞ ¼ pia33ð0; k2;xÞ þ 2pi
X
m

res a33ðk1; k2;xÞ
eik1r

k1

� 	
k1¼km

1

;

Z13ðrÞ ¼ 2pi
X
m

res a013ðk1; k2;xÞeik1r

 �

k1¼km
1

;

ðC:10Þ
for r < 0
Z11ðrÞ ¼ �pia11ð0; k2;xÞ � 2pi
X
l

res a11ðk1; k2;xÞ
eik1r

k1

� 	
k1¼kl

1

;

Z33ðrÞ ¼ �pia33ð0; k2;xÞ � 2pi
X
l

res a33ðk1; k2;xÞ
eik1r

k1

� 	
k1¼kl

1

;

Z13ðrÞ ¼ �2pi
X
l

res a013ðk1; k2;xÞeik1r

 �

k1¼kl
1

:

ðC:11Þ
Now that expressions for ZkjðrÞ have been found, we can return to Eq. (C.2) for S0
kjðk2;xÞ, which can be

expressed through ZkjðrÞ in the following manner
S0
kjðk2;xÞ ¼

X1
n¼�1

expð�iqnÞðZkjðnd þ bÞ � Zkjðnd � bÞÞ

¼ ZkjðbÞ � Zkjð�bÞ þ
X1
n¼1

e�iqnðZkjðnd þ bÞ � Zkjðnd � bÞÞ

þ
X1
n¼1

eiqnðZkjð�nd þ bÞ � Zkjð�nd � bÞÞ: ðC:12Þ
Since the distance between the neighboring sleepers d is always larger than the longitudinal size of the

sleepers 2b, it is obvious that for nP 1, nd � b > 0 and �nd � b < 0. This implies that to evaluate
Zkjðnd � bÞ we have to use expressions (C.10) (r > 0), whilst to evaluate Zkjð�nd � bÞ expressions (C.11)

(r < 0) have to be used.
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Eq. (12) can be simplified by using symmetry properties of the functions ZkjðrÞ. These properties read
Z11ðrÞ ¼ �Z11ð�rÞ;
Z33ðrÞ ¼ �Z33ð�rÞ;
Z13ðrÞ ¼ Z13ð�rÞ

ðC:13Þ
and follow from the following symmetry properties of the functions a11, a33 and a13
a11ðk1; k2;xÞ ¼ a11ð�k1; k2;xÞ;
a33ðk1; k2;xÞ ¼ a33ð�k1; k2;xÞ;
a013ðk1; k2;xÞ ¼ a013ð�k1; k2;xÞ;

ðC:14Þ
which implies that
2pi
X
m

res ajjðk1; k2;xÞ
eik1r

k1

� 	
k1¼km

1

¼ 2pi
X
l

res ajjðk1; k2;xÞ
eik1r

k1

� 	
k1¼kl

1

; j ¼ 1; 3

2pi
X
m

resfa013ðk1; k2;xÞeik1rgk1¼km
1
¼ �2pi

X
l

resfa013ðk1; k2;xÞeik1rgk1¼kl
1
:

ðC:15Þ
Employing relationships (C.13), Eq. (12) is reduced to
S0
jjðk2;xÞ ¼ 2ZjjðbÞ þ

X1
n¼1

ðeinq þ e�inqÞðeZZjjðnd þ bÞ � eZZjjðnd � bÞÞ; j ¼ 1; 3

S0
13ðk2;xÞ ¼

X1
n¼1

ðe�inq � einqÞðZ13ðnd þ bÞ � Z13ðnd � bÞÞ;
ðC:16Þ
where
eZZjjðrÞ ¼ 2pi
X
m

res ajjðk1; k2;xÞ
eik1r

k1

� 	
k1¼km

1

; j ¼ 1; 3: ðC:17Þ
To obtain expressions (C.16), we used the following chain of equalities
Zjjðnd þ bÞ � Zjjðnd � bÞ ¼ 2pi
X
m

res ajjðk1;k2;xÞ
eik1r

k1

� 	
k1¼km

1
;

r¼ndþb

þ piajjð0;k2;xÞ

� 2pi
X
m

res ajjðk1;k2;xÞ
eik1r

k1

� 	
k1¼km

1
;

r¼nd�b

0BB@ þ piajjð0;k2;xÞ

1CCA
¼ 2pi

X
m

res ajjðk1;k2;xÞ
eik1r

k1

� 	
k1¼km

1
;

r¼ndþb

� 2pi
X
m

res ajjðk1;k2;xÞ
eik1r

k1

� 	
k1¼km

1
;

r¼nd�b

¼ eZZjjðnd þ bÞ � eZZjjðnd � bÞ: ðC:18Þ
Further simplification of Eq. (C.16) can be carried out by analytically calculating the infinite series with

respect to n. Let us show the way to do this on the hand of the following term (for all other terms, this can

be done in exactly the same manner)
Q ¼
X1
n¼1

einqeZZjjðnd þ bÞ: ðC:19Þ
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Substituting expression for eZZjj given by Eq. (C.17) into Eq. (C.19) equation, we obtain
Q ¼ 2pi
X1
n¼1

einq
X
m

res ajjðk1; k2;xÞ
eik1r

k1

� 	
k1¼km

1

: ðC:20Þ
Introducing the notation km1 ¼ k0m þ ik00m with k0m and k00m real values and k00m > 0 (by definition, see Eq. (C.8)),

and changing the order of summation, Eq. (C.20) can be rewritten as
Q ¼ 2pi
X1
n¼1

einq
X
m

res ajjðk1; k2;xÞ
eik1ðndþbÞ

k1

� 	
k1¼km

1

¼ 2pi
X
m

eibðk
0
mþik00mÞres

ajjðk1; k2;xÞ
k1

� 	
k1¼km

1

X1
n¼1

einðqþ dk0mÞ–ndk00m: ðC:21Þ
The series over n in Eq. (C.21) is geometric progression with infinite number of terms and the common ratio

of successive terms p ¼ e�inqeik
0
mnde�k00mnd , jpj < 1.

Using the following formula for the sum of infinite geometric progression
X1
n¼1

pn ¼ p
1� p

: ðC:22Þ
Eq. (C.21) can be rewritten as
Q ¼ 2pi
X
m

eibðk
0
mþik00mÞres

ajjðk1; k2;xÞ
k1

� 	
k1¼km

1

X1
n¼1

einðqþ dk0mÞ–ndk00m

¼ 2pi
X
m

eibðk
0
mþik00mÞres

ajjðk1; k2;xÞ
k1

� 	
k1¼km

1

expðiðqþ dk0mÞ–dk00mÞ
1� expðidðqþ k0mÞ � dk00mÞ

¼ 2pi
X
m

eibk
m
1 res

ajjðk1; k2;xÞ
k1

� 	
k1¼km

1

expðikm1 d � iqÞ
1� expðikm1 d � iqÞ : ðC:23Þ
Evaluating the series over n in the other terms of Eq. (C.16), this equation can be reduced to the following

form
S0
jjðk2;xÞ ¼ 2piajjð0; k2;xÞ þ 2pi

X1
m¼1

res
ajjðk1; k2;xÞ

k1

� 	
k1¼km

1

� 2eik
m
1
b

�
þ ðeikm1 b � e�ikm

1
bÞ expðikm1 d þ iqÞ

1� expðikm1 d þ iqÞ

�
þ expðikm1 d � iqÞ
1� expðikm1 d � iqÞ

	�
ðC:24Þ

S0
13ðk2;xÞ ¼ 2pi

X1
m¼1

res a013ðk1; k2;xÞ

 �

k1¼km
1

ðeikm1 b � e�ikm
1
bÞ expðikm1 d � iqÞ

1� expðikm1 d � iqÞ

�
� expðikm1 d þ iqÞ
1� expðikm1 d þ iqÞ

	
ðC:25Þ
Substituting Eqs. (C.24) and (C.25) into Eq. (C.1), and carrying out regular algebraic manipulations,

expressions for the coefficients Jkj can be obtained that are given by Eq. (30).

Appendix D

Substitution of Eqs. (47) and (49) into the boundary conditions (44) and (45) gives the following system

of equations
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C1 expðadÞ þ C2 expð�adÞ þ C3 expðiadÞ þ C4 expð�iadÞ ¼ q0ðC1 þ C2 þ C3 þ C4Þ;
C1 expðadÞ � C2 expð�adÞ þ iC3 expðiadÞ � iC4 expð�iadÞ ¼ q0ðC1 � C2 þ iC3 � iC4Þ;
C1 expðadÞ þ C2 expð�adÞ � C3 expðiadÞ � C4 expð�iadÞ ¼ q0ðC1 þ C2 � C3 � C4Þ;
EIa3q0ðC1 � C2 � iC3 þ iC4Þ � EIa3ðC1 expðadÞ � C2 expð�adÞ

� iC3 expðiadÞ þ iC4 expð�iadÞÞ ¼ �C0ðKp � ixepÞB0ðxÞq0;
C1 þ C2 þ C3 þ C4 � F0 ¼ C0;

ðD:1Þ
with q ¼ expðidðxþ XÞ=V Þ.
When solved for Cj ðj ¼ 1; . . . ; 4Þ this system gives
Cj ¼ Dj=D; j ¼ 1; . . . ; 4

D ¼ 4iq0 4EJa3B0=ðT0ðB0

�
� T0ÞÞ cos

xd
V



� cosh ad

�
cos

xd
V



� cos ad

�
þ cos

xd
V

ðsinh ad



� sin adÞ þ cosh ad sin ad � sinh ad cos ad
�	

D1 ¼ iF0fq30 � q20ðexpð�adÞ þ 2 cosðadÞÞ þ q0ð1þ 2 expð�adÞ cosðadÞÞ � expð�adÞg;
D2 ¼ �iF0fq30 � q20ðexpðadÞ þ 2 cosðadÞÞ þ q0ð1þ 2 expðadÞ cosðadÞÞ � expðadÞg;
D3 ¼ �F0fq30 � q20ðexpð�iadÞ þ 2 coshðadÞÞ þ q0ð1þ 2 expð�iadÞ coshðadÞÞ � expð�iadÞg;
D4 ¼ F0fq30 � q20ðexpðiadÞ þ 2 coshðadÞÞ þ q0ð1þ 2 expðiadÞ coshðadÞÞ � expðiadÞg;
T0 ¼ Kp � ixep:

ðD:2Þ
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